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ABSTRACT

Light-field imaging has been recently introduced to mass mar-
ket by the hand held plenoptic camera Lytro. Thanks to a mi-
crolens array placed between the main lens and the sensor,
the captured data contains different views of the scene from
different view points. This offers several post-capture appli-
cations, e.g., computationally changing the main lens focus.
The raw data conversion in such cameras is however barely
studied in the literature. The goal of this paper is to study the
particularly overlooked problem of demosaicking the views
for plenoptic cameras such as Lytro. We exploit the redun-
dant sampling of scene content in the views, and show that
estimated disparities from the mosaicked data can guide the
demosaicking, resulting in minimum artifacts compared to the
state of art methods. Besides, by properly addressing the de-
multiplexing step, we take the first step towards light-field
super-resolution with negligible computational overload.

Index Terms— plenoptic camera, multi-frame demosaick-
ing, disparity estimation.

1. INTRODUCTION

Capturing the scene’s light-field has been an old interest in
the field of computational photography [1, 2]. However, the
recent release of hand held plenoptic cameras as Lytro1 has
introduced the potentials of light-field imaging to the mass
market. By placing a microlens array between the main lens
and the sensor, a plenoptic camera captures the direction of
the light bundles that enter the camera, in addition to their
intensity and color. Captured data is then demultiplexed to
provide the light-field, a matrix of horizontally and vertically
aligned views from slightly different points of view over the
scene. With the light-fields, a number of natural applications
have risen such as depth estimation [3, 4, 5] or post-capture
refocusing [6]. However, the angular resolution of the plenop-
tic cameras comes at the price of lower spatial resolution of
images. But promising super-resolution methods for plenop-
tic images have already been proposed [7, 3, 8, 4].

Among the state of art post-processing methods of the
plenoptic data, only very few address the very first steps re-
garding raw data conversion: (i) demosaicking, that aims to
recover the color content of the scene from the mosaicked

1http://www.lytro.com

captured raw data (discussed only by [9, 7]) and (ii) demulti-
plexing, that consists in reordering raw image pixels based on
microlenses positions in order to recover the matrix of views
(discussed only by [10, 11, 12] for Lytro).

Most of the works in the literature propose to first demo-
saick the raw data and then demultiplex to recover the views,
but we shall show that this leads to color artifacts on the
views. Indeed, by construction, neighbor pixels in a plenoptic
raw image contain different angular information (each pixel
under a microlens corresponds to a different view). So, de-
mosaicking the raw plenoptic image as it was a conventional
image wrongly mixes angular information. Indeed, classi-
cal algorithms interpolate neighbor color values creating the
so-called view cross-talk artifacts. Furthermore, it has been
shown in [12] that disparity estimation from views obtained
from the demosaicked raw image is prone to tremendous er-
rors. For this reason, we build on the work in [12] in which
the raw image is demultiplexed without demosaicking and we
study how to recover the full RGB views. This means that de-
mosaicking is done on the views and not on the raw data. Note
that the demultiplexing step (pixel reordering) transforms the
Bayer pattern on the raw data in a new color pattern on the
views (see Fig. 1, Fig. 3-(1) and [12] for more details). On this
new color pattern classical demosaicking algorithms poorly
recover highly textured areas. Hence, in this paper we pro-
pose a new demosaicking algorithm specifically designed for
plenoptic data and inspired by multi-frame demosaicking ap-
proaches [13]. The goal is to increase the chromatic resolu-
tion of one target view, exploiting the redundant sampling of
the scene using the other low-resolution views. In particular,
our strategy is to estimate and use pixel disparities to guide
our demosaicking algorithm.

It should be noted that most of the state of art methods de-
mosaick raw data before demultiplexing. The only exceptions
are [9, 7] who work with focused plenoptic cameras [14]. In
contrary to unfocused plenoptic cameras, the focused ones
have the microlens array placed at a distance different from
the microlens focal lengths, increasing the complexity of view
demultiplexing. Therefore [9, 7] demosaick final full-aperture
images of the scene, benefiting from their high resolution.
However, view demosaicking without the burden of calculat-
ing the full-resolution image is not discussed in such works.
In addition, none of the mentioned works explicitly address
the quinqunx sampling of the light-field.



Fig. 1. Demultiplexing as in [12]. The matrix of views has as many
views as number of pixels per microlens, but only two views are
shown here for the sake of visualization.

2. DISPARITY-GUIDED DEMOSAICKING OF THE
LIGHT-FIELD DATA

For conventional cameras, demosaicking methods exploit the
regularity of the color-sampling pattern to locally estimate the
color content of a captured scene [15]. However, demosaick-
ing views with color patterns as in Fig. 3-(1) is not straight-
forward considering the loss of the local chromatic content in
relatively large neighborhoods. So, given this color pattern,
we discard using the well-known methods for conventional
cameras. Instead, for each pixel of the target view we pro-
pose to gather all color information from all the pixels imag-
ing the same point in the scene (see a schema of the proposed
demosaicking approach in Fig. 2).

Fig. 2. Schema of the proposed demosaicking approach.

After demultiplexing, the sampled ligh-field is represented
by a matrix of views of size n × m (see Fig. 1). Let Ii,j
be the view in position (i, j) in the matrix of views and Ik,j
another view in the same row of the matrix of views. Then,
the disparity map between the two views is calculated with
an adapted block-matching method to plenoptic images as in
[12]. For a given point x = (x, y) of Ii,j , its corresponding

point in Ik,j is x′ := x + dik(x) = (x+ dxik(x), y) where
dik(x) = (dxik(x), 0) is the disparity function. Note that the
disparity second coordinate is null because the two views are
in the same row. Similarly, when the two views are in the
same column the disparity first coordinate is null.

Now, the estimated disparity at a certain point is considered
as reliable if the disparity of the corresponding point is similar
in absolute value. More precisely, dik(x) is reliable if

|dxik(x) + dxki(x
′)| 6 ε . (1)

In the binocular stereovision literature, this condition is
known as the right-left coherence check [16]. In the plenoptic
framework, we estimate the disparity using several pairs of
views from the same row. So, the Number of Reliable Esti-
mations (NRE) of x is the number of reliable disparities over
all the possible view pairs in each row:

NRE(x) =
∑

k=1...m
k 6=i

χ [dik(x)] , (2)

where χ is the characteristic function (equal to 1 if Eq. (1)
stands and 0 otherwise).

Thus, points with high NRE (highly reliable disparities) are
used to propagate color channel values among different views
of the light-field. It can be easily shown that, in a plenoptic
camera, the horizontal disparity of one pixel on Ii,j with re-
spect to Ii+a,j is equal to its vertical disparity with respect to
Ii,j+a with a ∈ N. The color propagation is then performed
both horizontally and vertically in the matrix of views. In
particular, if the value of the color channel c of pixel x on
view Ii,j is missing, then it is recovered if at least one of the
corresponding pixels on the other views contain information
in channel c (i.e., it does not correspond to the empty pixels
inserted to address the quinqunx light-field sampling). For-
mally, we initialize for each color channel c the intermediate
recovered view I

c

i,j = Ici,j . Then, we recover color informa-
tion from the other views as follows

Ici,j(x) =

∅ if NRE(x) 6 τ

Mean
u=1...n
v=1...m

{
Icu,v(x

′) 6∈ ∅
}

otherwise

(3)
where x′ = x +

(
dxiu(x), d

y
jv(x)

)
denote the corresponding

points in the other views. In this case, the disparities dxiu and
dyjv are the horizontal and vertical reliable disparities. Remark
that points x such that NRE(x) 6 τ do not have any new
color assigned. Therefore, the intermediate recovered view
Ii,j has considerably more colors than Ii,j but it is still not a
full RGB image.

It should be noted that non-recovered colors in Ii,j mostly
belong to homogeneous areas since block-matching methods
are manly accurate in textured areas. Also, a plenoptic camera
like Lytro provides views with very small baselines, meaning
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Fig. 3. Disparity-guided color recovery. (1) Top: The mosaicked view I4,4. Bottom: zoom-in of the red rectangle. (2) Top: the disparity-
guided color propagation view I4,4 in which more than 90% of the missing color values are recovered. Visible green-yellow pixels correspond
to the still missing color channel values(see Fig. 4(a) for final results). Bottom: zoom-in of the red rectangle. (3) Top: Disparity map of the
red rectangle. Bottom: NRE map corresponding to the same region.

that the possible occlusions are negligible and small NRE re-
gions are exclusively poor textured areas. However, recovery
of missing color values in homogeneous areas can be safely
performed on the views Ii,j , thanks to the lack of high fre-
quency content. In this manner, after performing color prop-
agation according to Eq. 3, a further low-complexity demo-
saicking method recovers the missing colors without intro-
ducing color artifacts. In particular, a bilinear color value in-
terpolation of neighboring pixels on the same view is used.

Up to this point, the horizontal and vertical sampling pe-
riods of the views are assumed to be equal. However, from
the estimation of microlens centers, the vertical sampling pe-
riod is estimated to be in average twice the horizontal sam-
pling period (see Fig. 1). To properly address the sampling
period ratios, the views shall be vertically up-sampled. Con-
sidering the lack of chromatic information on mosaicked de-
multiplexed views as in Fig. 3-(1), such an up-sampling step
does not appear beneficial for the task of disparity estimation.
But, in the demosaicked views, a fast up-sampling step in-
serts empty rows, and exploits again the estimated disparities
to recover the missing values.

The disparity maps and the reliability maps are vertically
interpolated using a median filter of size 3 × 4. To reduce
aliasing artifacts of disparity map interpolation, the reliability
threshold is increased to 7, resulting in the recovery of more
than 70% of the pixels of the empty rows.

In the next section, it is shown that using the described ap-
proach creates up-sampled views without introducing color
artifacts. This is because the chromatic content in the light-
field is sufficient for the first steps towards super-resolution.

3. EXPERIMENTAL RESULTS

Although our method is generic for any plenoptic data, we fo-
cus on the images captured by Lytro to show the performance
of the approach. In particular, we use the toolbox of [17] to
decode the light-field from the native file format of Lytro. For
all our results, the parameter of disparity reliability ε is set
to 0.1 pixels and the number of reliable estimation threshold
τ is set to 3 reliable estimations. In this section we compare
our method with the method in [10] (algorithm implemented
by the authors) and the results after demosaicking directly the
raw plenoptic image as a conventional image.

As explained beforehand, we use the algorithm in [12] for
demultiplexing raw data and estimating disparities from mo-
saicked views. Fig. 3-(1) shows one of the views after demul-
tiplexing and a zoom-in of the same view. Given the color
pattern observed in the views, it is clear that state of art demo-
saicking methods are not well adapted to our data. The esti-
mated disparity and reliability map (NRE) of the red rectangle
region are shown in Fig. 3-(3) respectively. Essentially, points
with small NRE correspond to poorly textured areas. Finally,
Fig. 3-(2) show the intermediate recovered view Ici,j after
applying our disparity-guided color propagation (Eq. 3), and
a zoom-in of the red rectangle. 49 views (out of 100 views)
in the light-field have been used. It can be seen through these
images that high frequency content of the scene is recovered
from the light-field. Besides, in average more than 90% of the
missing color values, including the empty pixels, are recov-
ered.

Fig. 4-(a,d) shows the final results of our algorithm in
which the vertical/horizontal sampling period ratio is cor-
rected for two different examples. The zoom-ins on the right



Fig. 4. (a,d) Final results of our method. (b) Resulting views after
demosaicking the raw data and then demultiplexing. (c,e) Results
using the algorithm in [10].

point out parts of the views where it is difficult to recover all
the color information as high-frequancies.

In Fig. 4-(c,e) we compare our results with the method in
[10]. Note that in our results letters are easily readable while
important artifacts appear on the results from [10]. Besides,
our method takes into account the microlenses ligh-field sam-
pling avoiding aliasing on the views. As a consequence, our
results are upsampled by a factor of two with respect to the
results in [10]. Finally, Fig. 4-(b) shows the same view ob-
tained by demosaicking the raw data as it was a conventional
image and then demultiplexing with the same algorithm (in-
stead of demultiplexing and then demosaick as we propose).
As mentioned in the introduction, the results suffer from view
cross-talk and aliasing.

4. CONCLUSION

Plenoptic cameras capture the light-field of a scene in a single
snapshot, providing interesting post-capture possibilities. De-
mosaicking of the captured data is mostly overlooked in the
literature. It is shown in this paper that to avoid color artifacts
mainly produced by view crosstalk, the raw data requires to
be demultiplexed into views of the scene, without being de-
mosaicked. A previously block-matching method for plenop-
tic data is used to estimate pixel disparities. Then reliable
estimated disparities are used to demosaick views, exploit-
ing the redundant sampling of the scene. The results do not
contain color artifacts, compared to the state of art methods.
Thanks to accurate view demultiplexing and sub-pixel accu-
racy of the estimated disparities, the spatial resolution of the
demosaicked views are higher than the state of art methods
by a factor of 2, without bearing the complexity of additional
super-resolution steps. Circumventing the fattening effect of
the block-matching method, and achieving higher factors of
super-resolution are left as future works.
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